
1330 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 5, MAY 2022

STT-MRAM-Based Multicontext FPGA for
Multithreading Computing Environment

Jeongbin Kim , Yongwoon Song, Student Member, IEEE, Kyungseon Cho, Hyukjun Lee , Member, IEEE,
Hongil Yoon, Member, IEEE, and Eui-Young Chung , Member, IEEE

Abstract—The demand for high-performance computing and
rapidly increasing power consumption has increased the necessity
for application-specific accelerators. In the datacenter and mobile
system, more applications are increasingly relying on acceler-
ators. Field-programmable gate arrays (FPGAs) emerge as a
good candidate because they have high programmability and
power efficiency. As the number of applications requiring accel-
eration increases, there is huge demand for FPGAs that support
multiple contexts. Previous FPGA designs that support multi-
context have various shortcomings such as volatility, poor power
efficiency, large performance, area, and reconfiguration overhead.
In this article, we propose a spin-transfer torque magnetic RAM
(STT-MRAM)-based nonvolatile multicontext FPGA (NVMC-
FPGA) that overcomes these shortcomings. We introduce the
NVMC-FPGA architecture and operation modes that take advan-
tage of nonvolatility and support multicontext. We also develop
the multicontext-aware FPGA computer aided design flow to
make the most of the NVMC-FPGA. Compared to the con-
ventional SRAM-based FPGA, when eight identical circuits are
mapped, the NVMC-FPGA improves the performance by 15.3%
on average and reduces the power consumption by 11.2%–80.7%,
depending on the number of simultaneously activated circuits.
Moreover, when eight different circuits are mapped, the NVMC-
FPGA improves the performance by 58.5% on average and
reduces the power consumption by 6.2%–63.3%, depending on
the number of simultaneously activated circuits.

Index Terms—Accelerator architectures, design automation,
field-programmable gate arrays (FPGAs), multithreading,
nonvolatile memory, reconfigurable architectures, spin-transfer
torque magnetic RAM (STT-MRAM).

Manuscript received January 18, 2021; revised May 11, 2021; accepted
June 2, 2021. Date of publication June 22, 2021; date of current version
April 21, 2022. This work was supported in part by the Research and
Development Program for Advanced Integrated-Intelligence for Identification
through the National Research Foundation of Korea (NRF) funded by Ministry
of Trade, Industry and Energy under Grant 2018M3E3A1057248; and in
part by the Ministry of Trade, Industry and Energy (MOTIE) under Grant
10080722 and Korea Semiconductor Research Consortium (KSRC) support
program for the development of the future semiconductor device. This article
was recommended by Associate Editor W. Zhang. (Corresponding author:
Eui-Young Chung.)

Jeongbin Kim, Kyungseon Cho, Hongil Yoon, and Eui-Young Chung
are with the Department of Electrical and Electronic Engineering, Yonsei
University, Seoul 03722, South Korea (e-mail: xtankx123@yonsei.ac.kr;
kyungseon.cho@yonsei.ac.kr; hyoon@yonsei.ac.kr; eychung@yonsei.ac.kr).

Yongwoon Song and Hyukjun Lee are with the Department of Computer
Science and Engineering, Sogang University, Seoul 04017, South Korea
(e-mail: ywsong1985@gmail.com; hyukjunl@sogang.ac.kr).

Digital Object Identifier 10.1109/TCAD.2021.3091440

I. INTRODUCTION

AS THE Dennard scaling [1] has broken down, power
density starts growing, and it limits performance

enhancement. Process scaling enables smaller transistors and
higher performance, but the increase in power consump-
tion outpaces. Many factors decrease power efficiency. When
the processor processes instructions, the energy consumed
by computing is just around 10%–40%, and the rest is
consumed by memory accesses [2]. Moreover, this addi-
tional energy consumption gets larger when the processor
is more programmable because high programmability makes
data flow from memory to processor more complicated [3].
Processors, such as central processing units (CPUs) and graph-
ics processing units (GPUs) sacrifice the power efficiency for
programmability.

Therefore, application-specialized accelerators have been
used to obtain power efficiency. Power-sensitive systems,
such as the datacenter and mobile already adopt the appli-
cation specialized accelerator. They contain special-purpose
application-specific integrated circuits (ASICs) for image pro-
cessing, network, video codecs, neural network processing,
etc. However, they can process only a single application
because ASICs have zero programmability.

Accordingly, field-programmable gate arrays (FPGAs) are
emerging for accelerators because they have both programma-
bility and power efficiency. FPGAs are generally used in the
datacenter [4]–[6] and mobile [7]–[9] as the accelerator. In
terms of application, as deep learning becomes a hot issue
recently, FPGAs have become a popular computing platform
for a neural network accelerator [10], [11]. As the number
of applications that require accelerators increases, FPGAs are
integrated into the commercial multithreading computing envi-
ronment as Intel develops the CPU+FPGA platform [12] for
the datacenter. In the multithreading computing environment,
application execution accompanies frequent context switch-
ing. Therefore, there is high demand for FPGAs supporting
multicontext.

However, conventional FPGAs are not adequate to accel-
erate multiple contexts because conventional FPGAs need
reconfiguration for the multicontext operation. The recon-
figuration overhead is fatal to performance [13], [14],
causing severe performance degradation. Furthermore, they
are based on static random-access memory (SRAM) that
is a volatile memory. Hence, partial power gating is
not viable for inactive contexts when multiple contexts

1937-4151 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Yonsei Univ. Downloaded on April 22,2022 at 04:48:34 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5950-0056
https://orcid.org/0000-0003-2981-0800
https://orcid.org/0000-0003-2013-8763

KIM et al.: STT-MRAM-BASED MULTICONTEXT FPGA FOR MULTITHREADING COMPUTING ENVIRONMENT 1331

are mapped. Power gating is critical for efficient power
management.

There have been many studies for supporting multicon-
text more efficiently. Most multicontext FPGA architectures
contain a separate configuration memory to store multiple
contexts. This technique was first proposed through a dynam-
ically programmable gate array (DPGA) [15]. The DPGA
supports multicontext by implementing a multicontext con-
figuration memory outside a look-up table (LUT). Since the
DPGA, several multicontext FPGA architectures using the
DPGA structure have been proposed [16]–[18]. Moreover,
Tabula [19] commercialized the multicontext FPGA with this
idea. However, all studies based on the DPGA structure still
have reconfiguration overhead when the FPGA performs con-
text switching because the configuration memory and LUT are
separated.

To solve this problem, in-LUT multicontext should be
implemented. In-LUT multicontext contains multicontext data
in the LUT. However, it is hard to implement with SRAM
because the cell size of the SRAM is quite large. Thus, a
DRAM-based reconfigurable acceleration fabric (DRAF) [20]
implements multicontext FPGA by making the LUT data
cells using a dynamic random access memory (DRAM) array.
As the LUT contains multiple contexts, reconfiguration is
not needed when performing context switching. However, the
DRAF has several problems caused by characteristics of the
DRAM. First, the DRAF has a much lower performance
than the conventional SRAM-based FPGA. Second, all cir-
cuits must be reconfigured when power is shut down, and the
power gating is not possible. Third, its static power is quite
large when idle state because it has refresh overhead.

Magnetic random-access memory (MRAM) is a more suit-
able memory than DRAM and SRAM for implementing
multicontext FPGAs. MRAM is nonvolatile memory that con-
tains the data on magnetic tunnel junction (MTJ) cells. It is
more suitable for implementing multicontext FPGAs for sev-
eral reasons. First, the cell size of MRAM is small compared
to SRAM [21], so it is easy to implement in-LUT multi-
context. Second, nonvolatility makes reconfiguration unnec-
essary after the power shutdown. Third, partial power gat-
ing essential for managing multicontext is viable because
MRAM is nonvolatile. Finally, MRAM has a much faster
read performance than DRAM, comparable to SRAM. MRAM
shows poor write performance, yet it is hidden in FPGAs.
When FPGAs are used as accelerates, LUTs perform only
memory read operations for reading mapped logic. MRAM
write operations in the FPGA only occur when mapping the
circuit.

Two types of MRAM are studied for FPGAs: 1) thermal-
assisted switching MRAM (TAS-MRAM) and 2) spin-
transfer torque MRAM (STT-MRAM). TAS-MRAM is an
old-fashioned MRAM and has several drawbacks compared
to STT-MRAM. First, its read latency is longer than STT-
MRAM [22]. Second, TAS-MRAM requires a large area [23],
which becomes a critical issue in implementing multicontext
FPGA. Although there is a study that implements in-LUT
FPGA supporting two contexts [24], it lacks in experiments

and analysis in addition to poor performance and cost of
TAS-MRAM-based FPGAs.

In this article, we propose a nonvolatile multicontext FPGA
(NVMC-FPGA) based on STT-MRAM. The contributions of
this article are summarized as follows.

1) The STT-MRAM-based NVMC-FPGA architecture is
presented. It exploits the nonvolatile multicontext LUT
(NVMC-LUT) that supports multicontext using multiple
MTJ cells and a precharged sense amplifier (PCSA).
We demonstrate that the NVMC-FPGA architecture is
adequate for multithreading computing environments
through runtime context-switching, which can be easily
achieved through the PCSA.

2) Management schemes and operation modes for the
NVMC-FPGA are proposed. Management schemes
include introducing the concepts of the physical context
layer (PCL)/logical context layer (LCL) and PCL-free
mapping (PFM) technique that improves space effi-
ciency. Operation modes include temporal multicontext
(TMC) and spatial multicontext (SMC). TMC sup-
ports two types of multithreading: a) coarse-grained
and b) fine-grained multithreading. SMC makes multiple
circuits operate simultaneously and improves space
utilization.

3) Computer-aided design (CAD) flow for the NVMC-
FPGA that introduces “context packing” and “MC-
placement” stage is proposed. Context packing stage
makes SMC possible by mapping multiple circuits to
one LCL. MC-placement stage maps multiple circuits
more evenly distributed, allowing more circuits to be
mapped and incurs less thermal problems.

Experiments are performed in two environments, and the
results are compared to the conventional SRAM-based FPGA.
When eight identical circuits are mapped, the NVMC-FPGA
improves the performance by 15.3% on average and reduces
the power consumption by 11.2%–80.7%, depending on the
number of simultaneously activated circuits. When eight dif-
ferent circuits are mapped, the performance is improved by
58.5% on average. The reduction of average power consump-
tion is from 6.2% to 63.3%, depending on the number of
simultaneously activated circuits. This article is organized
as follows. Section II contains the background. Section III
explains the details of the NVMC-FPGA. Section IV presents
the performance and cost evaluation of the NVMC-FPGA.
Finally, Section V draws the conclusion of this article.

II. BACKGROUND

A. FPGA Architecture

FPGAs provide not only ASIC-like performance but also
flexibility because FPGAs program the LUT to implement a
logic function. The LUT contains multiple data cells imple-
menting the LUT entries. FPGAs are reconfigurable because
data cells can be modified. Conventional FPGAs are classi-
fied as an SRAM-based FPGA because they use SRAM for
data cells. In the FPGA, a single LUT is packed with flip-flops
(F/Fs) for proper management and operation. A LUT with F/Fs

Authorized licensed use limited to: Yonsei Univ. Downloaded on April 22,2022 at 04:48:34 UTC from IEEE Xplore. Restrictions apply.

1332 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 5, MAY 2022

Fig. 1. Island-style FPGA architecture.

Fig. 2. Conventional FPGA and NVMC-FPGA CAD flow (gray boxes are
added and modified for the NVMC-FPGA).

is called a basic logic element (BLE). BLEs are grouped with
MUXes and a full-crossbar. This group forms the main logic
block of the FPGA, and it is called a configurable logic block
(CLB).

The overall FPGA architecture comprises CLBs, block
memories (BRAMs) used as a memory device within the
FPGA, digital signal processing (DSP) unit for the spe-
cific arithmetic operation, and I/O blocks. Most FPGAs
mainly adopt an island-style routing architecture [25], as
shown in Fig. 1. CLBs are arranged in a grid pattern
while BRAMs and DSPs are interlaced. I/O blocks wrap
around them to communicate with the outside. Between ele-
ments, there are interconnects to communicate with each
element. The interconnect includes connection and switch
boxes. Connection boxes connect wires and each element.
Switch boxes are located at the intersection and connect the
intersecting wires. These boxes commonly consist of MUXes,
and these MUXes select the input and output signals using the
attached memory cells. FPGAs reconfigure interconnects by
changing data of memory cells that are attached at interconnect
MUXes.

B. FPGA CAD Flow

The FPGA CAD flow is a sequence of processes that syn-
thesizes the user-input circuit and maps it to the FPGA. White
boxes in Fig. 2 represent a general FPGA CAD flow. When the
circuit hardware description language (HDL) is given to the
FPGA CAD flow, it generates a bitstream that maps the circuit
to the FPGA. Compared to an ASIC CAD flow, “technology

Fig. 3. Conventional placement sequence.

synthesis” and “packing” are added in the FPGA CAD flow.
Technology synthesis generates an LUT-level netlist from a
gate-level netlist, and packing groups LUT-level netlist ele-
ments to FPGA hardware elements and determines the FPGA
size by considering hardware resources of the context. For the
NVMC-FPGA, the conventional FPGA CAD flow is modified,
as shown in Fig. 2 with gray boxes. Context packing is added
to the conventional FPGA CAD flow, and MC-placement is
optimized “placement” for the multicontext environment.

The main purpose of the placement is to place FPGA hard-
ware elements to FPGA devices with minimizing a critical
path delay that is a delay of the longest path. Since the
FPGA size is already determined through packing, the con-
ventional placement places the hardware resources based on
timing optimization under the area constraint. Fig. 3 repre-
sents the conventional placement sequence. It is based on the
timing-driven placement [26], which is to minimize the criti-
cal path delay by using a swap operation. The swap operation
swaps places of each CLB. It minimizes the critical path delay
by putting a condition (5).

First, it receives a packed circuit from packing, containing
the list of FPGA hardware elements. Subsequent steps of the
conventional placement sequence is as follows. Each sequence
matches the number in Fig. 3.

1) It places all CLBs randomly and calculates the timing
cost of this placement. PCurrent is a current placement
after placing CLBs randomly, and TCCurrent is its tim-
ing cost. The timing cost is the sum of the delay of all
connections in the current placement, considering each
connection’s criticality. After that, it enters the swap
operation.

2) The first step of the swap operation selects two CLBs
(CLBα, CLBβ) randomly from the current placement.

Authorized licensed use limited to: Yonsei Univ. Downloaded on April 22,2022 at 04:48:34 UTC from IEEE Xplore. Restrictions apply.

KIM et al.: STT-MRAM-BASED MULTICONTEXT FPGA FOR MULTITHREADING COMPUTING ENVIRONMENT 1333

Fig. 4. Proposed NVMC-LUT architecture.

CLBα can be an empty CLB. If an empty CLB is
selected, it just moves one CLB to the empty CLB place.

3) It swaps the selected CLBs and calculates the timing
cost of this placement. PSwapped is a placement after
swapping, and TCSwapped is its timing cost.

4) Calculate �TC, which is the timing cost change when
swapping CLBs.

5) If �TC is less than 0, it means that the swap operation
decreases the timing cost.

6) Hence, if the condition in (5) is met, it keeps performing
swap operations. It selects PSwapped over PCurrent.

7) If the condition in (5) is not met, it restores PCurrent. It
means that it does not perform the swap operation.

8) It iterates from step (2) to (7) as many times as the
number of CLBs in the circuit.

9) Finally, it places other elements (BRAM, I/O block,
DSP) and outputs placed FPGA.

This sequence is simplified in this description for easier
understanding. We just explain the parts that are necessary
to understand our proposed method. The cost of wiring and
calculating the timing cost is excluded in this description. The
detail of this algorithm is explained in [26]. Consequently, the
placement places FPGA hardware elements (especially, CLBs)
while minimizing the critical path delay through the above
sequence.

III. NVMC-FPGA : STT-MRAM-BASED
NONVOLATILE MULTI CONTEXT FPGA

In this section, we explain the detail of our proposed
NVMC-FPGA. It is divided into three parts. First, NVMC-
LUT based on STT-MRAM, which becomes a major building
block for the NVMC-FPGA. Second, the architecture and
operation modes of the NVMC-FPGA. Finally, the CAD flow
for the NVMC-FPGA supports multicontext FPGA architec-
ture and utilizes the NVMC-FPGA’s characteristics.

A. STT-MRAM-Based Nonvolatile Multi Context
Look-Up Table

Previous research on STT-MRAM-based LUTs is limited
to supporting a single context and reveals other severe limita-
tions. Since LUT operations in [23] must be synchronized to
the clock signal, it has a huge limitation when configuring the
FPGA with the combinational logic. In [27], LUT operations
are not synchronized to clocks. However, it has a configuration
limitation because the LUT only operates normally according
to the clock level. Although the method in [28] eliminates the
above limitations, it consumes very high static power.

Fig. 5. Schematic diagram of the one PCSA data cell and the write circuit
in the proposed NVMC-LUT.

The STT-MRAM-based NVMC-LUT [29] solves these
problems by employing the PCSA [30] as a sense amplifier.
The PCSA has a characteristic of high speed and high reliabil-
ity, so it is more efficient for the MTJ cell. Furthermore, the
context switching can be operated during runtime because the
sensing latency of the PCSA is extremely small (about 200
ps [30]). From our experiment results, it is only 0.02% of the
critical path delay on average. Therefore, the context-switching
operation has a little effect on the clock frequency.

Fig. 4 represents the NVMC-LUT architecture. N-input
NVMC-LUT consists of the following elements. The decoder
to select one data cell through an input signal, 2N PCSA data
cells for storing all data of N-input LUT, and a write circuitry
that writes data to the PCSA data cell. Each PCSA data cell
comprises the PCSA and contains all context data for each
bit address. When an N-bit signal is input to the LUT, the
decoder selects one of the data cells and activates it (If bit
address “000001” is the input, data cell #1 is selected). After
activating one of the data cells, the context is selected by “con-
text*_on” signals. As a result, the NVMC-LUT outputs the
data corresponding to the selected context and address.

Fig. 5 represents the schematic diagram of the PCSA data
cell and write circuit. The PCSA data cell is divided into two
parts by sense amplifier transistors (MN3, MN4). The upper
part is the sense amplifier and the lower part is the memory
part that contains MTJ data cells. The memory part of NVMC-
LUT contains multicontext MTJ cells, and they are selected
by context*_on signals.

When the PCSA data cell is selected, the “IN0” signal
toggled. The data cell part is connected to a write circuit or
a sense amplifier according to the write enable (WE) signal
and performs a read or write operation. The details of the read
operation are as follows. As the IN0 signal toggled, the latches
(MP1, MP2, MN1, MN2) are precharged through the precharge
transistors (MP3, MP4). Precharged latches read the data from
the MTJ cell and hold the data, and it is connected to the
output node through the output inverter on the right side. In
the writing operation, the memory part is connected to the
write circuit when the “WE” signal is toggled to high, and the
data is written to the MTJ cell through the write circuit.

Authorized licensed use limited to: Yonsei Univ. Downloaded on April 22,2022 at 04:48:34 UTC from IEEE Xplore. Restrictions apply.

1334 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 5, MAY 2022

Fig. 6. NVMC-FPGA architecture.

B. Architecture and Operation of the NVMC-FPGA

We propose the NVMC-FPGA that exploits the NVMC-
LUT. To support nonvolatility and multicontext, several parts
of the architecture are changed compared to the conventional
FPGA. Besides, we propose various operation modes suitable
for this architecture to increase the efficiency of the NVMC-
FPGA.

1) Architecture of the NVMC-FPGA: Fig. 6 represents the
architecture of the proposed NVMC-FPGA. The gray boxes
represent the changes from the conventional FPGA. In the
logic part, conventional LUTs in each CLBs are all replaced
with NVMC-LUTs and as many F/Fs as the number of con-
texts. In the interconnection part, the single SRAM cell at
interconnect MUXes is replaced with as many MTJ-cells as
the number of contexts. With these changes, the NVMC-
FPGA is architecturally able to support multicontext and has
nonvolatility.

2) Operation for the NVMC-FPGA: To describe the opera-
tions of the NVMC-FPGA, we first define two terms: 1) PCL
and 2) LCL.

PCL is a partition of the NVMC-FPGA based on the phys-
ical location of FPGA elements. As shown in Fig. 6, one F/F
and one context data in NVMC-LUTs at each BLEs, and a
single MTJ-cell at each interconnect MUXes are grouped and
form one PCL. LCL is a partition of the NVMC-FPGA that
is logically connected and can operate simultaneously in the
same time domain. To simplify the FPGA design, we can make
LCL to be same as PCL. However, in this case, as many LCLs
as the number of PCLs can only be mapped regardless of the
remaining space in PCL.

To solve this problem, the NVMC-FPGA supports the PFM
operation mode. PFM is a mapping technique that allows the
LCL to be mapped to multiple PCLs, not limited to a sin-
gle PCL. It makes the NVMC-FPGA map multiple contexts
more flexibly and can map additional contexts to the remain-
ing space regardless of PCL. Fig. 7 shows PCLs and LCLs
of the NVMC-FPGA when mapping multiple contexts with
or without the PFM mode. Different colors represent different
LCLs of various sizes, and four planes represent four PCLs.

Fig. 7. PCLs and LCLs when mapping multiple contexts with or without
PFM mode (same color represents the same LCL, and white color represents
empty space).

Fig. 8. Fine-grained and coarse-grained multithreading in the NVMC-FPGA.

When mapping multiple contexts without the PFM mode, each
PCLs can map only a single LCL regardless of the remaining
space, and it is shown on the left side of Fig. 7.

When mapping multiple contexts with PFM mode, each
PCL can map multiple LCLs, allowing an LCL to be mapped
to the remaining space of multiple PCLs. The right side of
Fig. 7 represents PCLs and LCLs of the NVMC-FPGA when
mapping multiple contexts with the PFM mode. In this exam-
ple, two more LCLs (patterned color) can be mapped than the
NVMC-FPGA without the PFM mode. Thus, in a real envi-
ronment, where circuits of various sizes are mapped, PFM
improves space efficiency. To map multiple contexts with the
PFM mode, hardware elements of each PCL should know
which LCL is mapped. The implementation of PFM will be
explained after explaining the multithreading methods because
the possible multithreading method varies depending on how
it is implemented. Next, we discuss how PCL and LCL are
used to map multiple contexts.

TMC: Each LCL can be switched in runtime—we call
this TMC. It is possible because the proposed NVMC-LUT
architecture allows switching the context with little timing
overhead by employing the PCSA. TMC supports coarse-
grained and fine-grained multithreading. These terms are
generally used in computing systems, and we use them to
depict the multithreading behavior of the NVMC-FPGA.

Fig. 8 shows an example of the coarse-grained and fine-
grained multithreading in the NVMC-FPGA. Each colored
block means a single clock operation, and both LCLs are
assumed to have the same clock frequency. The left side
represents a sequence of operations in each clock cycle for
two LCLs without multithreading. The right side represents
a sequence of operations when employing two multithread-
ing techniques. The operation and hardware resource usage of
each multithreading are as follows.

If the NVMC-FPGA runs with coarse-grained multithread-
ing, it performs a context switching after a sequence of
operations ends. It shows little performance loss because
context switching occurs infrequently. The context switch-
ing occurs as follows. The NVMC-LUT performs the context
switching by changing the context*_on signal. In terms of

Authorized licensed use limited to: Yonsei Univ. Downloaded on April 22,2022 at 04:48:34 UTC from IEEE Xplore. Restrictions apply.

KIM et al.: STT-MRAM-BASED MULTICONTEXT FPGA FOR MULTITHREADING COMPUTING ENVIRONMENT 1335

Fig. 9. PFM array.

F/F, only one F/F is needed for each BLE. This would require
flushing pipelines upon context switching, yet it reduces the
area overhead of F/Fs. In terms of BRAM, a single LCL can
use the entire BRAM space because data usage of BRAM is
not continuous for each sequence of operations.

When the NVMC-FPGA runs with fine-grained multithread-
ing, it performs context switching after a single clock operation
ends. It guarantees fairness among contexts. However, fre-
quent context-switching can lead to performance loss due
to its overhead. Unlike coarse-grained multithreading, all of
LCL’s intermediate results should be maintained when con-
text switching occurs because context switching occurs every
cycle. For this, there should be as many F/Fs as the number
of PCLs for each BLE. Furthermore, if multiple LCLs use
the BRAM, they should share the BRAM space because each
LCL’s data should be maintained even if context-switching
occurs.

SMC: Multiple circuits can also be mapped in a single
LCL—we call this SMC. SMC has several advantages. First,
multicontext can be implemented in the conventional FPGA
with a single LCL. Second, circuits mapped with SMC can
operate simultaneously. Third, if the NVMC-FPGA uses SMC,
it can save power consumption by turning off the unused cir-
cuits because the NVMC-FPGA supports partial power gating.
Furthermore, SMC increases the utilization of FPGA. When
mapping small circuits to the FPGA, another circuit can be
mapped to the remaining space. SMC is supported through the
context packing stage of the NVMC-FPGA CAD tool flow.

3) Implementation of PFM: To map contexts with PFM
mode, the hardware elements of each PCL should know which
LCL is mapped. There are two ways to achieve this.

The first implementation is that the context mapping
information is stored in the external memory and is provided
externally without any additional hardware element. When a
particular LCL becomes active, it selects the corresponding
hardware resources from multiple PCLs. This implementation
does not have additional hardware overhead. However, if PFM
is implemented in this way, the NVMC-FPGA in PFM mode
cannot operate with fine-grained multithreading because it is
hard to perform context switching quickly.

The second implementation is adding an additional hard-
ware element called a “PFM array” for quick context-
switching. Fig. 9 represents the architecture and operation of
the PFM array. The PFM array is an STT-MRAM array to
store information about elementwise LCL-PCL mapping. It
contains n bit data, and each bit represents a single LCL. The
value “1” in the array indicates which LCL is mapped to each

PCLs in ascending order. First “1” is mapped to PCL#0, and
next “1” is mapped to PCL#1. It means LCL#1 & #2 are
mapped to PCL#0 & #1. In the right example, LCL#2 chooses
PCL#1 and PCL#0 LUT in CLB#0 and CLB#1, respectively.
Therefore, the NVMC-FPGA in the PFM mode can operate
with fine-grained multithreading through PFM array. However,
the hardware overhead of the PFM array is nonnegligible
because all interconnect MUXes and CLBs should have these
arrays.

In this article, we implement PFM without the PFM array
because it is best in the area and does not worsen overall
performance. In the case of area, this architecture can perform
PFM without additional hardware “PFM array.” Therefore,
this implementation makes multiple contexts can be mapped
most efficiently with the same area. In the case of the overall
performance, operating only with coarse-grained multithread-
ing does not worsen overall performance. Furthermore, when
fine-grained multithreading is essential, the NVMC-FPGA
without the PFM array can also operate with fine-grained mul-
tithreading if multiple contexts are mapped without the PFM
mode.

C. CAD Flow for the NVMC-FPGA

We modify a CAD flow for the NVMC-FPGA to support the
following functions. First, it supports multicontext in order that
multiple circuits can be mapped to the NVMC-FPGA struc-
ture. Second, SMC is supported by integrating multiple circuits
into a single LCL. Finally, partial power gating is provided to
reduce the power consumption of the FPGA. We implement
these functions with verilog-to-routing (VTR) tool [31]. The
VTR tool is the most popular opensource FPGA CAD tool
and is broadly used in academia.

The CAD flow for the NVMC-FPGA is shown in Fig. 2.
Three parts are modified from the conventional FPGA CAD
flow to support the above functions. First, all CAD flow steps
are modified to support multicontext functions. Each step
of the CAD flow operates for multiple circuits and stores
the output from all circuits. Second, the context packing
is added to support SMC. Integrated circuits can be oper-
ated simultaneously and marked distinctly to support partial
power gating. Finally, the conventional placement is modified
for a multicontext-aware placement (MC-placement). When
multiple circuits are mapped, it allows each circuit to be
mapped dispersedly to the entire FPGA structure. The detailed
process of the context packing and the MC-placement is as
follows.

1) Context Packing: The context packing is added between
the packing and placement to support SMC. The context pack-
ing packs multiple circuits to a single LCL. Processes of
context packing are as follows. First, we pack elements of
each circuit into a single circuit. That enables several circuits
to be mapped to a single LCL. The FPGA size is redeter-
mined by considering the number of hardware resources in
the packed context. Next, CLBs, multipliers, and interconnect
MUXes are labeled with its circuit’s name (i.e., context num-
ber), allowing partial power gating. Therefore, power gating
can be performed on CLBs, multipliers, and interconnects.

Authorized licensed use limited to: Yonsei Univ. Downloaded on April 22,2022 at 04:48:34 UTC from IEEE Xplore. Restrictions apply.

1336 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 5, MAY 2022

Fig. 10. MC-placement sequence.

BRAMs are excluded in power gating because it is based on
SRAM. Consequently, the context packing packs multiple cir-
cuits through the processes above and gives the list of circuits
to the MC-placement.

2) MC-Placement: When a user wants to map multiple cir-
cuits on the NVMC-FPGA, each circuit can be placed on each
PCLs by repeating the conventional placement. However, it
causes the circuits to be unevenly mapped to only a few CLBs.
Therefore, we propose the MC-placement that maps multiple
circuits more evenly distributed. There are two advantages to
MC-placement. First, it allows more circuits to be mapped
more evenly. Because the NVMC-FPGA supports PFM, more
circuits than the number of PCLs can be mapped. Second,
it solves a thermal issue. Circuits mapped only on a few
CLBs causes thermal issues. The thermal issue worsens when
the FPGA performs fine-grained multithreading, potentially
increasing the error rate [32].

Fig. 10 shows the MC-placement sequence. Gray boxes are
changed from the conventional placement. The beginning of
the placement is modified to receive multiple circuits. The
condition in (7) is the main algorithm of MC-placement. It is
added to map the circuit more evenly. Finally, the iterate point
(11) is added to map multiple circuits in the NVMC-FPGA.

The details of MC-placement are as follows. First, step (1)
performs the placement of one circuit. Steps (2)–(4) swap

Fig. 11. Example of the MC-swap operation.

two selected CLBs and calculate the timing cost of swapped
placement. Step (5) checks if the timing cost increases, which
is the same as the conventional placement (TCSlack will be
explained later). If the condition in (6) is met, this swap does
not affect the distribution of context and only improves the
critical path delay. Therefore, the swap operation is performed
to optimize the critical path delay. If the condition in (6) is
not met, we determine whether the swap operation distributes
the context more evenly. MC-placement checks this with the
condition in (7). Ctx_Nα represents the number of contexts
that are mapped on CLBα. When each circuit finishes from
steps (1) to (11), Ctx_Ns of all CLBs are determined. The con-
dition in (7) consists of two subconditions. The former checks
if only CLBβ is placed. If it is true, the current swap opera-
tion is actually a move operation, not a swap operation. The
latter checks if Ctx_Nβ is less than Ctx_Nα . Satisfying both
conditions indicates that the swap is beneficial because it dis-
tributes contexts on two CLBs more evenly. Consequently, the
condition in (7) makes the swap operation move CLBβ to a
less occupied CLBα.

Fig. 11 shows an example of the MC-swap operation to
explain the condition in (7). Terms “placed CLB” and “not
placed CLB” are determined with respect to the circuit cur-
rently performing placement operation. In this example, three
circuits are already placed, and the fourth circuit is being
placed. The asterisk numbers on CLBs are Ctx_N of each CLB
after three circuits are placed by iterating from (1) to (11) three
times. By step (2), CLBs are selected to operate a swap of two
CLB’s in gray boxes of Fig. 11. In this example, it is assumed
that the condition in (5) is met, and the condition in (6) is not
met because only CLBβ is placed. CLBα and CLBβ in Fig. 11
are at the swapped position. The former subcondition in (7)
is met because CLBβ is only placed. The latter subcondition
in (7) is met because Ctx_Nβ is less than Ctx_Nα , and thus
it keeps performing the swap operation. As a result, Ctx_Nα

and Ctx_Nβ become 3 and 3, and contexts are evenly placed.
The MC-Swap operation only performs the swap operation

when both conditions (5) and (7) are met. Thus, the MC-
placement can optimize both the critical path delay and context
distribution. Besides, we add the timing cost slack (TCSlack)
to condition in (5) to favor even distribution of contexts over
slight increasing timing cost. The condition in (5) is met even
if TCSwapped is larger than TCCurrent due to adding TCSlack.
Thus, more swap operations can reach step (7).

After a current circuit is placed, we update Ctx_N for all
CLB. Steps from (1) to (11) are repeated for each circuit.
We place other FPGA hardware elements such as BRAM, I/O
block, DSP. Finally, the MC-placement produces the placed
multicontext FPGA that optimizes both context distribution

Authorized licensed use limited to: Yonsei Univ. Downloaded on April 22,2022 at 04:48:34 UTC from IEEE Xplore. Restrictions apply.

KIM et al.: STT-MRAM-BASED MULTICONTEXT FPGA FOR MULTITHREADING COMPUTING ENVIRONMENT 1337

(a) (b) (c)

Fig. 12. Simulation result for the NVMC-LUT. (a) Read latency (ps).
(b) Power (μW). (c) Area (μm2).

and critical path delay under the area constraint given from
context packing.

IV. EVALUATION

This section shows the performance and cost of the NVMC-
FPGA. First, we show the simulation results of NVMC-LUT.
Then, we measure the performance and cost of the NVMC-
FPGA with the VTR tool [31] and compare them with the
conventional SRAM-based FPGA, including the analysis on
the effect of our CAD flow.

A. NVMC-LUT

1) Experimental Setup: The size of the LUT refers to the
number of inputs connected to the LUT, and it affects the
delay and area of circuits mapped on the FPGA. We choose
the size of the LUT to be 6. It is the optimal point of the delay
and area [33], which is most commonly used in the industry.
A PSPICE simulation is used to evaluate the performance of
the NVMC-LUT. Parameters are chosen to produce a yield
close to 100%. The yield is derived by running the Monte-
Carlo simulation 1000 times. NCSU 45-nm process technology
model parameters and the small macro model of the MTJ are
used for all simulations. The tunnel magnetoresistance ratio
(TMR) is 200%.

For the NVMC-FPGA experiments, we derive parameters
of the 6-input NVMC-LUT, including the read latency, power
consumption, and area. We compare these results with an
SRAM-based 6-input LUT (SB-LUT). The architecture of the
SB-LUT is based on the SRAM LUT architecture in [25],
and the architecture parameters are obtained from this arti-
cle [33]. All results of SB-LUT are obtained from the PSPICE
simulation.

2) Experimental Result: Fig. 12 shows the read latency,
power consumption, and area for the NVMC-LUT compared
to the SB-LUT. The numbers in front of the NVMC on the
x-axis represent the number of maximum contexts that can be
mapped to each NVMC-LUT.

Fig. 12(a) shows the read latency of the NVMC-LUT. As the
number of contexts increases, the sense amplifier’s size also
increases, which leads to a slight increase in the read latency.
As a result, the read latency increases by 15.5%–39.5% com-
pared to the SB-LUT. However, the FPGA performance is
mostly affected by the interconnect delay and the area. Thus,

the increase of LUT read latency does not significantly affect
the FPGA performance.

Fig. 12(b) shows the power consumption of the NVMC-
LUT. The read power is consumed when the LUT’s output is
switched, while the static power is always consumed regardless
of output data transition. The static power of NVMC-LUT is
almost doubled than SB-LUT’s when it has one context, and
it is due to the precharge operation of the PCSA in NVMC-
LUT. Therefore, the power consumption of LUTs depends on
the transition rate of the output data.

Fig. 12(c) shows the area of the NVMC-LUT. The gray
line represents the used SB-LUT area when multicontexts
are mapped. In the multicontext environment, the FPGA that
uses SB-LUT maps multiple contexts in multiple LUTs sep-
arately. Therefore, it is estimated simply by multiplying the
area of the single context SB-LUT by the number of con-
texts to compare with the NVMC-LUT’s area. Even though
the SRAM’s cell size is larger than STT-MRAM, the area of
the NVMC-LUT is about 2.5 times larger than the area of the
SB-LUT when the number of the context is 1. It is because
the NVMC-LUT implements a large sense-amplifier (PCSA)
for the performance. However, the area increase can be hid-
den from the perspective of the FPGA. LUTs take only a part
of the entire FPGA chip, whereas the interconnects take a
larger area. In addition, as the number of contexts increases,
the area difference significantly decreases. When the number
of contexts is 8, the NVMC-LUT takes less area than the SB-
LUT. It means the NVMC-LUT is efficient in the multicontext
environment that supports a large number of contexts. The
detailed experimental results of the FPGA area are presented
in Fig. 18.

B. CAD Flow for the NVMC-FPGA

1) Experimental Setup: We discuss the setup in terms
of FPGA models for the NVMC-FPGA, various workloads,
and CAD tool environments. These setups correspond to all
NVMC-FPGA experiments. The details of these are as follows.

FPGA Models: FPGA architecture models, including
a baseline FPGA, are based on Intel Stratix IV GX
(EP4SGX230) [34], which is provided by the VPR CAD
tool [35]. We modify LUT parameters with the values from
Fig. 12. The baseline FPGA architecture is a conventional
SRAM-based FPGA with a single PCL. We choose the
NVMC-FPGA with 8 PCLs, the maximum number of PCL
that the NVMC-FPGA supports. The architecture is shown in
Fig. 6 (n = 8).

Workloads: Workloads are represented in Table I. Four
benchmark suites are used: 1) Machsuite [36] benchmark;
2) Vivado high-level synthesis (HLS) design examples [37];
3) verilog circuits in VTR[31]; and 4) in-house neural network
applications. Machsuite is a benchmark suite that evaluates a
hardware accelerator and includes various workloads. In-house
neural networks contain two neural network types: 1) binary
neural network [38] and 2) softmax function [39]. In Table I,
the bold number on each benchmark represents the hardware
element that affects the FPGA size most. It indicates that when

Authorized licensed use limited to: Yonsei Univ. Downloaded on April 22,2022 at 04:48:34 UTC from IEEE Xplore. Restrictions apply.

1338 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 5, MAY 2022

TABLE I
BENCHMARK LIST

the multiple circuits are mapped, each workload’s FPGA size
is bounded by the bold hardware element.

CAD Tool: To evaluate the NVMC-FPGA, VTR [31] is
used. As mentioned in Section III-C, VTR is the most pop-
ular opensource FPGA CAD tool. As the name implies, it
takes a circuit in verilog as an input and delivers the final
FPGA mapping that has completed routing. The CAD flow
sequence of VTR is the same as Fig. 2, and VTR consists of
several tools; ODIN-II [40] for the logic synthesis, ABC [41]
for the technology synthesis, and VPR [35] for the entire back-
end sequence. VPR allows power estimation through SPICE
CMOS technology information. In this article, it is estimated
based on the 45-nm predictive technology model [42] obtained
from the nano-CMOS tool [43], and both static and dynamic
power are considered. VTR takes verilog code as an input,
but Machsuite and Vivado HLS design examples are written in
C/C++ languages. Therefore, the Vivado HLS Tool [37] is used
for converting from C/C++ to verilog code. We use Yosys [44]
for the logic synthesis instead of “ODIN-II” as it offers bet-
ter optimization and proper multimodule support. These CAD
tools are used for both the baseline and NVMC-FPGA for a
fair comparison.

2) Improvement by MC-Placement: In this article, we pro-
pose the MC-placement to distribute contexts more evenly in
the multiple PCLs environment. We compare the context distri-
bution of the NVMC-FPGA using the conventional placement
and the MC-placement. The conventional placement does not
support multicontext. Therefore, in this experiment, input and
circuit iteration parts are added to the conventional placement
for supporting multicontext. However, the main algorithm of
the conventional placement is maintained, and the conventional
placement does not consider context distribution at all. We
use the standard deviation to show the context distribution,
measured with the number of contexts mapped to each CLB
(Ctx_N). The standard deviation is the measure of distribu-
tion, and low standard distribution means that contexts are
more evenly distributed.

Fig. 13 shows a distribution of contexts after mapping
the workload “diffeq” using conventional and MC-placement.

(a) (b)

Fig. 13. Number of contexts placed in each CLB for workload diffeq mapped
using (a) conventional placement and (b) MC-placement.

Fig. 14. Context distribution for conventional and MC-placement (normalized
to the conventional placement).

The number in boxes represents the number of contexts
mapped to each CLB in the FPGA. In Fig. 13(a), contexts are
concentrated in a few CLBs because the conventional place-
ment does not consider the multicontext mapping. However,
when the proposed MC-placement is used, contexts are more
evenly distributed without increasing the critical path delay.
This distribution is shown in Fig. 13(b). In terms of stan-
dard deviation, Fig. 13(b) shows less standard deviation than
Fig. 13(a) as most values in Fig. 13(b) are close to the average.
It indicates that the proposed MC-placement can map contexts
more evenly distributed.

Fig. 14 compares the standard deviations of the NVMC-
FPGA that maps 8 contexts with the conventional place-
ment and the proposed MC-placement. “Cor” workload is
excluded because it is fully crowded. The NVMC-FPGA using

Authorized licensed use limited to: Yonsei Univ. Downloaded on April 22,2022 at 04:48:34 UTC from IEEE Xplore. Restrictions apply.

KIM et al.: STT-MRAM-BASED MULTICONTEXT FPGA FOR MULTITHREADING COMPUTING ENVIRONMENT 1339

Fig. 15. Context distribution with respect to timing cost slack for stencil3d
(normalized to the conventional placement).

TABLE II
IMPROVEMENT OF CONTEXT DISTRIBUTION COMPARED TO THE TIMING

COST SLACK OF 0 WHEN ALLOWING THE 5% INCREASE IN THE

CRITICAL PATH DELAY

MC-placement shows a 44.1% less standard deviation than the
conventional placement. It successfully allows more circuits to
be mapped and incurs fewer thermal problems.

Moreover, Fig. 15 shows the effect of the timing cost slack
on the critical path delay and context distribution when “sten-
cil3d” is mapped. As mentioned above, the timing cost slack
is the parameter that allows performing swap operation even
if the critical path delay increases. It makes contexts more
evenly distributed with a sacrifice of the critical path delay. In
these experiments, we sweep the timing cost slack from 0 to
0.01 to find the optimal point. When the timing cost slack is
0.002, the standard deviation decreases 28.6% more than the
case of 0 slack, while the critical path delay only increases
by 5%.

Table II represents the improvement of the context distribu-
tion for varying the timing cost slack. When we allow the
5% increase in the critical path delay, the standard devia-
tion decreases by 1.4% point (fft), to 32.1% point (dif), and
17.2% point on average. “ctz” is excluded because there is no
delay and context distribution change with varying the tim-
ing cost slack. It is due to the small FPGA size, which leads
to little mapping change. Consequently, the timing cost slack
makes the circuit more distributed with little critical path delay
increasing.

Fig. 16. Normalized throughput for the SRAM-based FPGA with dynamic
reconfiguration (normalized to the NVMC-FPGA).

C. Performance and Cost of the NVMC-FPGA

This section shows the performance and cost of the design
using the proposed NVMC-FPGA. The DRAF [20] is excluded
from the comparison because it is a volatile FPGA and has
three times slower performance than the baseline. Because the
baseline has a single PCL and does not support TMC struc-
turally, we implement multicontext on the baseline in two
ways.

First, the baseline performs multicontext through dynamic
reconfiguration. In this case, we show the experimental result
with dynamic reconfiguration when the baseline has the same
area as the NVMC-FPGA. For each workload, we determine
the area occupied by the NVMC-FPGA with eight contexts,
and we use the baseline FPGA with the same size to pack
as many contexts as possible. Thus, both FPGAs are fully
utilized. Dynamic reconfiguration time overhead depends on
various factors, such as the FPGA controller and the circuit
mapped. We borrow the shortest reconfiguration time (4 μs)
in [13] as dynamic reconfiguration time overhead for a fair
comparison.

Second, the baseline performs multicontext through SMC.
Unlike reconfiguration experiments, this experiment proceeds
with the same number of contexts for both FPGAs. Therefore,
the area of FPGA for each workload is different, and the
area of the baseline FPGA and NVMC-FPGA is also differ-
ent. Eight contexts are mapped on both the baseline and the
NVMC-FPGA, and all contexts in the baseline are mapped into
a single PCL and operate with SMC. The NVMC-FPGA maps
each circuit separately to each PCL via the MC-placement.
Therefore, both timing and context distribution are optimized
for the NVMC-FPGA.

For each implementation, we first compare the performance
and cost between the baseline and the NVMC-FPGA when
the same eight circuits are mapped. It is called single instruc-
tion multiple data (SIMD) experiment. Next, we compare the
performance and cost when two different circuits are mapped,
and it is called the multiple instruction multiple data (MIMD)
experiment.

1) Versus Baseline With Dynamic Reconfiguration: Fig. 16
represents the experimental results of the normalized through-
put for the baseline with dynamic reconfiguration. They are
normalized to the NVMC-FPGA and conducted by sweeping

Authorized licensed use limited to: Yonsei Univ. Downloaded on April 22,2022 at 04:48:34 UTC from IEEE Xplore. Restrictions apply.

1340 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 5, MAY 2022

Fig. 17. Critical path delay for the baseline and NVMC-FPGA (SIMD).

the reconfiguration time overhead of the baseline. It is assumed
that the dynamic reconfiguration is performed every 10 or 100
clock cycles (coarse-grained multithreading). Both SIMD and
MIMD experimental results are derived through performing
all possible cases and averaging these results (14 and 91 cases
in SIMD and MIMD, respectively).

As shown in Fig. 16, the reconfiguration time overhead is
quite critical to the FPGA performance. When the reconfig-
uration time overhead is 4 μs per 10 and 100 clock cycles
(from [13]), the baseline’s throughput is only 5.6%/8.1%
(SIMD/MIMD) and 42.4%/48.7% (SIMD/MIMD) of the
NVMC-FPGA’s throughput. As a result, the baseline that
performs multicontext through dynamic reconfiguration has
limitations in a multicontext environment on top of additional
power consumption due to reconfiguration.

2) Versus Baseline With SMC: Next, we compare the
performance and cost of the NVMC-FPGA to the baseline
that performs multicontext through SMC. The baseline maps
all contexts into a single PCL and operates with SMC. These
contexts are operated with a single global clock if they are
accelerated simultaneously because VPR does not support the
multiple clock regions and domains. Therefore, multiple con-
texts in the same PCL share a single global clock domain in
our experiments. Experiments can be conducted through the
area or the number of context constraints. In this article, we
conducted SIMD experiments with the context constraint. All
experimental results of the NVMC-FPGA are normalized to
the baseline that performs multicontext through SMC.

Single Instruction Multiple Data Experiments: Fig. 17 rep-
resents experimental results of the critical path delay. The
NVMC-FPGA shows a comparable critical path delay to the
baseline, although the NVMC-LUT has a longer critical path
delay than the baseline LUT. The reason is as follows. As
the number of contexts increases, the baseline FPGA size
increases because it has a single PCL. On the contrary, the
NVMC-FPGA size is not increased because it maps multiple
contexts on multiple PCLs. This size difference counteracts
the latency gap between the SB-LUT and NVMC-LUT. The
critical path delay of “bn4” in the NVMC-FPGA is much
smaller due to the large FPGA size increase of the baseline.
Consequently, the critical path delay of the NVMC-FPGA is
1.4% smaller on average when eight contexts are mapped.

However, it is not a fair performance comparison
because the baseline can accelerate eight mapped contexts

Fig. 18. Normalized area for the NVMC-FPGA (SIMD).

Fig. 19. Normalized TPA for the NVMC-FPGA (SIMD).

simultaneously at the cost of using the larger area. Therefore,
we compare two FPGAs’ performance using throughput per
area (TPA), which can consider both performance and area
difference.

Fig. 18 represents the normalized area of the NVMC-FPGA.
The NVMC-FPGA area is much smaller than the baseline,
although the baseline’s LUT size is smaller. It is because
the size of circuits mapped on the baseline increases as we
use SMC. The baseline’s area increase varies for each circuit
because its size increase is bounded by different hardware ele-
ments. In the island-style routing architecture (Fig. 1), each
hardware element increases differently when the FPGA size
increases. LUTs, F/Fs, and DSPs increase proportionally to
the square of the FPGA size. However, I/O blocks increase
proportionally to the FPGA size. It means that when more
circuits are mapped, the circuit whose size is bounded by the
I/O blocks shows more area increase in the baseline. As a
result, the NVMC-FPGA reduces the area usage by 89.2%
compared to baseline on average when the eight contexts are
mapped in an SIMD fashion.

Experimental results of the critical path delay and area for
the NVMC-FPGA are used to compute TPA. As mentioned
above, the baseline maps multiple contexts using SMC and can
accelerate up to eight contexts simultaneously. In contrast, the
NVMC-FPGA accelerates eight contexts with TMC. TPA is
the fair metric to compare the performance of baseline (SMC)
and the NVMC-FPGA (TMC).

The result is represented in Fig. 19. As shown in Fig. 17,
the critical path delays of both FPGAs are very similar. Thus,
TPA depends significantly on the area. For circuit bn4, TPA
improved by 9× because both critical path delay and area are
improved. For the circuit with no significant improvement in
the area, the TPA is less than 1. On average, TPA has improved
by about 15.3%.

Authorized licensed use limited to: Yonsei Univ. Downloaded on April 22,2022 at 04:48:34 UTC from IEEE Xplore. Restrictions apply.

KIM et al.: STT-MRAM-BASED MULTICONTEXT FPGA FOR MULTITHREADING COMPUTING ENVIRONMENT 1341

Fig. 20. Normalized power consumption with varying the number of contexts
simultaneously activated (SIMD).

Fig. 21. Static and dynamic power consumption with eight contexts and one
context simultaneously activated (SIMD).

In terms of power consumption, we measure the power con-
sumption under the condition, where both the baseline and
NVMC-FPGA produce the same throughput by duplicating the
NVMC-FPGA. Both FPGAs map eight contexts, and we vary
the number of activated contexts. That is, inactive contexts are
in the idle state.

Fig. 20 shows the power consumption with respect to the
number of simultaneously activated circuits. The case where 8
circuits are activated simultaneously is the worst-case scenario
for the NVMC-FPGA because it cannot take advantage of
power gating as all contexts are active. Nevertheless, the power
consumption of most circuits decreases compared to the base-
line. On average, the power consumption of the NVMC-FPGA
is 11.2% smaller than the baseline when they accelerate 8 cir-
cuits simultaneously. Besides, cases with a smaller number of
simultaneously activated circuits show larger improvements.
If the number of simultaneously activated circuits is reduced,
the NVMC-FPGA can save power consumption through power
gating.

Fig. 21 represents the static and dynamic power consump-
tion of selected workloads when 1 and 8 contexts are active for
both FPGAs. The selected workloads are those with the larger
power consumption of the NVMC-FPGA than the baseline
when eight contexts are activated. “BF” and “NF” mean the
baseline FPGA and the NVMC-FPGA, respectively. When the
number of activated contexts is reduced from 8 to 1 in the base-
line FPGA, the dynamic power consumption only decreases,
while static power consumption does not. On the other hand,

Fig. 22. Performance and power consumption when using TMC (MIMD).

both static and dynamic power consumption decrease in the
NVMC-FPGA.

As a result, the power consumption of the NVMC-FPGA
decreases more than the baseline by up to 80.7%, depending
on the number of circuits activated simultaneously.

Multiple Instruction Multiple Data Experiments: MIMD
experiments more closely reflect actual multithreading com-
puting environments. To find the tendency of the performance
and cost according to benchmarks’ characteristics, the bench-
marks are divided into two categories according to FPGA
size and delay: 1) “Little” and “Big” in terms of FPGA size
and 2) “Fast” and “Slow” in terms of delay. Four circuits
are chosen to represent each category, and they are shown
in Fig. 22.

First, we show experimental results only with TMC, repre-
sented in Fig. 22. In these experiments, both the NVMC-FPGA
and baseline map four contexts for each circuit. When two
circuits are in the same size category as “aes-dif” and “fft-
sm8,” the NVMC-FPGA improves TPA about 32% on average
because there is no underutilizing for each PCLs in the
NVMC-FPGA. When two circuits are in different size cat-
egories, the NVMC-FPGA may show less area efficiency
because smaller circuits may not fully utilize the entire FPGA.
That causes TPA degradation in cases of “aes-fft” and “fft-dif.”

However, this degradation can be reduced by mapping sev-
eral small circuits to a single PCL with SMC, which uses both
TMC and SMC. Through SMC, the NVMC-FPGA maps 12
more contexts for each experiment aes-fft, fft-dif, “dif-sm8,”
and “aes-sm8,” without any area overhead. Fig. 23 shows the
performance and power consumption when the NVMC-FPGA
performs with both TMC and SMC. When two circuits are in
different size categories, TPA is improved as SMC increases
space efficiency. In aes-fft, TPA degradation is significantly
reduced from 72.4% to 32.4%. In fft-dif, TPA improvement
has increased significantly from −74.2% to 10%. In dif-sm8
and aes-sm8, TPA is further enhanced. As a result, in the
MIMD scenario, the NVMC-FPGA (with TMC and SMC)
improves TPA by 58.5% on average.

In terms of the power consumption, experimental results
show a similar tendency to results that produced in the SIMD

Authorized licensed use limited to: Yonsei Univ. Downloaded on April 22,2022 at 04:48:34 UTC from IEEE Xplore. Restrictions apply.

1342 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 5, MAY 2022

Fig. 23. Performance and power consumption when using both TMC and
SMC (MIMD).

environment. As the number of simultaneously activated con-
texts decreases, the power consumption improves significantly
in the case of the NVMC-FPGA due to partial power gat-
ing. SMC increases space efficiency and reduces the power
consumption. In MIMD scenario, the NVMC-FPGA (with
TMC and SMC) reduces the power consumption from 6.2%
to 63.3%, depending on the number of circuits activated
simultaneously.

V. CONCLUSION

We proposed NVMC-FPGA based on STT-MRAM.
The NVMC-FPGA compensates the shortcomings of the
previously proposed multicontext FPGAs by exploiting STT-
MRAM-based LUT supporting multicontext. We proposed
the NVMC-FPGA architecture and operation modes for the
NVMC-FPGA that fully utilize the advantages of STT-
MRAM. Moreover, we modified the FPGA CAD flow for the
NVMC-FPGA.

In SIMD environment experiments, the NVMC-FPGA
improves the performance by 15.3% than the conventional
SRAM FPGA. The reduction of average power consumption
is from 11.2% to 80.7%, depending on the number of simul-
taneously activated circuits through power gating. In MIMD
environmental experiments that mimic the actual multithread-
ing computing environment, the performance is improved by
58.5% on average, using both TMC and SMC. The reduction
of average power consumption is from 6.2% to 63.3%, depend-
ing on the number of simultaneously activated circuits. Finally,
we showed that our proposed NVMC-FPGA is adequate for
the multithreading computing environment.

In the future, we will further improve the NVMC-FPGA
to support the larger number of contexts and explore vari-
ous energy-efficient computing methods. Furthermore, we will
explore more diverse optimization criteria by modifying the
design space exploration process of VPR and explore the
optimal context mapping for the NVMC-FPGA under various
real multithreaded workloads.

REFERENCES

[1] R. H. Dennard, F. H. Gaensslen, H.-N. Yu, V. L. Rideovt, E. Bassous,
and A. R. Leblanc, “Design of ion-implanted MOSFET’s with very small
physical dimensions,” IEEE Solid-State Circuits Soc. Newslett., vol. 12,
no. 1, pp. 38–50, 2007.

[2] Y. S. Shao and D. Brooks, “Energy characterization and instruction-level
energy model of Intel’s Xeon Phi processor,” in Proc. IEEE Int. Symp.
Low Power Electron. Design (ISLPED), 2013, pp. 389–394.

[3] M. Horowitz, “1.1 computing’s energy problem (and what we can do
about it),” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers
(ISSCC), 2014, pp. 10–14.

[4] A. Putnam et al., “A reconfigurable fabric for accelerating large-scale
datacenter services,” in Proc. ACM/IEEE 41st Int. Symp. Comput.
Architect. (ISCA), 2014, pp. 13–24.

[5] A. M. Caulfield et al., “A cloud-scale acceleration architecture,” in
Proc. 49th Annu. IEEE/ACM Int. Symp. Microarchit. (MICRO), 2016,
pp. 1–13.

[6] P. K. Gupta, “Accelerating datacenter workloads,” in Proc. 26th Int.
Conf. Field Program. Logic Appl. (FPL), 2017, p. 20.

[7] F.-L. Yuan, C. C. Wang, T.-H. Yu, and D. Marković, “A multi-granularity
FPGA with hierarchical interconnects for efficient and flexible mobile
computing,” IEEE J. Solid-State Circuits, vol. 50, no. 1, pp. 137–149,
Jan. 2015.

[8] S. Jiang et al., “Accelerating mobile applications at the network edge
with software-programmable FPGAs,” in Proc. IEEE INFOCOM Conf.
Comput. Commun., 2018, pp. 55–62.

[9] P. G. Mousouliotis and L. P. Petrou, “Software-defined FPGA accelerator
design for mobile deep learning applications,” in Proc. Int. Symp. Appl.
Reconfig. Comput., 2019, pp. 68–77.

[10] E. Nurvitadhi, D. Sheffield, J. Sim, A. Mishra, G. Venkatesh, and
D. Marr, “Accelerating binarized neural networks: Comparison of FPGA,
CPU, GPU, AND ASIC,” in Proc. IEEE Int. Conf. Field Program.
Technol. (FPT), 2016, pp. 77–84.

[11] E. Nurvitadhi, J. Sim, D. Sheffield, A. Mishra, S. Krishnan, and D. Marr,
“Accelerating recurrent neural networks in analytics servers: Comparison
of FPGA, CPU, GPU, and ASIC,” in Proc. IEEE 26th Int. Conf. Field
Program. Logic Appl. (FPL), 2016, pp. 1–4.

[12] P. K. Gupta, “Intel XEON+ FPGA platform for the data center,”
presented at the Proc. Workshop Reconfig. Comput. Masses Really,
2015.

[13] K. Papadimitriou, A. Dollas, and S. Hauck, “Performance of partial
reconfiguration in FPGA systems: A survey and a cost model,” ACM
Trans. Reconfig. Technol. Syst., vol. 4, no. 4, p. 36, 2011.

[14] S. Di Carlo, G. Gambardella, M. Indaco, P. Prinetto, D. Rolfo, and
P. Trotta, “Dependable dynamic partial reconfiguration with minimal
area & time overheads on Xilinx FPGAs,” in Proc. 23rd Int. Conf. Field
Program. Logic Appl., 2013, pp. 1–4.

[15] A. DeHon, “Dynamically programmable gate arrays: A step toward
increased computational density,” in Proc. 4th Can. Workshop Field
Program. Devices, vol. 8, 1996.

[16] W. Chong, S. Ogata, M. Hariyama, and M. Kameyama, “Architecture
of a multi-context FPGA using reconfigurable context memory,” in
Proc. 19th IEEE Int. Parallel Distrib. Process. Symp., 2005, p. 7.

[17] Y. Birk and E. Fiksman, “Dynamic reconfiguration architectures for
multi-context FPGAs,” Comput. Elect. Eng., vol. 35, no. 6, pp. 878–903,
2009.

[18] K. Tatsumura, M. Oda, and S. Yasuda, “A pure-CMOS nonvolatile
multi-context configuration memory for dynamically reconfigurable
FPGAs,” in Proc. IEEE Int. Conf. Field Program. Technol. (FPT), 2014,
pp. 215–222.

[19] T. R. Halfhill, “Tabula’s time machine,” Microprocess. Rep., vol. 131,
Mar. 2010.

[20] M. Gao et al., “DRAF: A low-power DRAM-based reconfigurable accel-
eration fabric,” ACM SIGARCH Comput. Architect. News, vol. 44, no. 3,
pp. 506–518, 2016.

[21] S. Mittal, J. S. Vetter, and D. Li, “A survey of architectural approaches
for managing embedded DRAM and non-volatile on-chip caches,” IEEE
Trans. Parallel Distrib. Syst., vol. 26, no. 6, pp. 1524–1537, Jun. 2015.

[22] S. Senni, L. Torres, G. Sassatelli, A. Gamatie, and B. Mussard,
“Exploring MRAM technologies for energy efficient systems-on-chip,”
IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 6, no. 3, pp. 279–292,
Sep. 2016.

[23] W. Zhao, E. Belhaire, C. Chappert, and P. Mazoyer, “Spin trans-
fer torque (STT)-MRAM-based runtime reconfiguration FPGA circuit,”
ACM Trans. Embedded Comput. Syst., vol. 9, no. 2, p. 14, 2009.

[24] Y. Guillemenet et al., “MRAM based EFPGAs: Programming and silicon
flows, exploration environments, MRAM current state in industry and
its unique potentials for FPGAs,” in Proc. IEEE Int. Conf. Reconfig.
Computing . FPGAs, 2009, pp. 18–23.

[25] I. Kuon, R. Tessier, and J. Rose, FPGA Architecture: Survey and
Challenges. New York, NY, USA: Now, 2008.

Authorized licensed use limited to: Yonsei Univ. Downloaded on April 22,2022 at 04:48:34 UTC from IEEE Xplore. Restrictions apply.

KIM et al.: STT-MRAM-BASED MULTICONTEXT FPGA FOR MULTITHREADING COMPUTING ENVIRONMENT 1343

[26] A. Marquardt, V. Betz, and J. Rose, “Timing-driven placement for
FPGAs,” in Proc. ACM/SIGDA 8th Int. Symp. Field Program. Gate
Arrays, 2000, pp. 203–213.

[27] K. Jo, K. Cho, and H. Yoon, “Variation-tolerant and low power look-up
table (LUT) using spin-torque transfer magnetic RAM for non-volatile
field programmable gate array (FPGA),” in Proc. IEEE Int. SoC Design
Conf. (ISOCC), 2016, pp. 101–102.

[28] S. Paul, S. Mukhopadhyay, and S. Bhunia, “Hybrid CMOS-STTRAM
non-volatile FPGA: Design challenges and optimization approaches,” in
Proc. IEEE/ACM Int. Conf. Comput.-Aided Design, 2008, pp. 589–592.

[29] K. Cho, S. Lee, C. Lee, T. Yim, and H. Yoon, “Low power multi-context
look-up table (LUT) using spin-torque transfer magnetic RAM for non-
volatile FPGA,” in Proc. IEEE Int. SoC Design Conf. (ISOCC), 2017,
pp. 107–108.

[30] W. Zhao, C. Chappert, V. Javerliac, and J.-P. Noziere, “High speed, high
stability and low power sensing amplifier for MTJ/CMOS hybrid logic
circuits,” IEEE Trans. Magn., vol. 45, no. 10, pp. 3784–3787, Oct. 2009.

[31] K. E. Murray et al., “VTR 8: High performance CAD and customizable
FPGA architecture modelling,” ACM Trans. Reconfig. Technol. Syst.,
vol. 31, no. 2, pp. 1–55, 2020.

[32] L. Zhang et al., “Addressing the thermal issues of STT-MRAM from
compact modeling to design techniques,” IEEE Trans. Nanotechnol.,
vol. 17, no. 2, pp. 345–352, Mar. 2018.

[33] E. Ahmed and J. Rose, “The effect of LUT and cluster size on deep-
submicron FPGA performance and density,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 12, no. 3, pp. 288–298, Mar. 2004.

[34] Intel Corp. (2020). Intel Stratix Series FPGAs and SoCs. [Online].
Available: https://www.intel.com/content/www/us/en/products/
programmable/stratix-series.html

[35] J. Luu et al., “VPR 5.0: FPGA CAD and architecture exploration tools
with single-driver routing, heterogeneity and process scaling,” ACM
Trans. Reconfig. Technol. Syst., vol. 4, no. 4, p. 32, 2011.

[36] B. Reagen, R. Adolf, Y. S. Shao, G.-Y. Wei, and D. Brooks, “MachSuite:
Benchmarks for accelerator design and customized architectures,” in
Proc. IEEE Int. Symp. Workload Characterization (IISWC), 2014,
pp. 110–119.

[37] Xilinx. (2020). Vivado High-Level Synthesis. [Online]. Available:
https://www.xilinx.com/products/design-tools/vivado/integration/esl-
design.html

[38] S. Agatonovic-Kustrin and R. Beresford, “Basic concepts of artificial
neural network (ANN) modeling and its application in pharmaceutical
research,” J. Pharmaceut. Biomed. Anal., vol. 22, no. 5, pp. 717–727,
2000.

[39] J. S. Bridle, “Training stochastic model recognition algorithms as
networks can lead to maximum mutual information estimation of
parameters,” in Proc. Adv. Neural Inf. Process. Syst., 1990, pp. 211–217.

[40] P. Jamieson, K. B. Kent, F. Gharibian, and L. Shannon, “ODIN II—
An open-source verilog HDL synthesis tool for CAD research,” in
Proc. 18th IEEE Annu. Int. Symp. Field Program. Cust. Comput. Mach.,
2010, pp. 149–156.

[41] R. Brayton and A. Mishchenko, “ABC: An academic industrial-strength
verification tool,” in Proc. Int. Conf. Comput.-Aided Verification, 2010,
pp. 24–40.

[42] W. Zhao and Y. Cao, “Predictive technology model for nano-CMOS
design exploration,” ACM J. Emerg. Technol. Comput. Syst., vol. 3, no. 1,
p. 1, 2007.

[43] A. S. University. (2011). Predictive Technology Model. [Online].
Available: http://ptm.asu.edu

[44] C. Wolf. (2016). Yosys Open Synthesis Suite. [Online]. Available:
http://www.clifford.at/yosys/s

Jeongbin Kim received the B.S. degree in electrical
and electronic engineering from Yonsei University,
Seoul, South Korea, in 2014, where he is currently
pursuing the Ph.D. degree.

His research interests include flash memory appli-
cations, nonvolatile memory, and high-performance
system architectures.

Yongwoon Song (Student Member, IEEE) received
the B.S. degree in computer science and engineer-
ing from Sogang University, Seoul, South Korea,
in 2012, where he is currently pursuing the Ph.D.
degree.

His research interests include application-specific
memory architectures and embedded systems.

Kyungseon Cho received the M.S. degree in
electrical and electronic engineering from Yonsei
University, Seoul, South Korea, in 2018.

Her research interests include integrated solid-
state devices and circuits.

Hyukjun Lee (Member, IEEE) received the B.S.
degree in computer engineering from the University
of Southern California at Los Angeles, Los Angeles,
CA, USA, in 1993, and the M.S. and Ph.D. degrees
in electrical engineering from Stanford University,
Stanford, CA, USA, in 1995 and 2001, respectively.

He is currently a Professor with the Department
of Computer Science and Engineering, Sogang
University, Seoul, South Korea. His research
interests include embedded systems, low-power
design, and memory/storage architectures.

Hongil Yoon (Member, IEEE) received the B.S.
degree in electrical engineering and computer sci-
ences from the University of California at Berkeley,
Berkeley, CA, USA, in 1991, and the M.S. and Ph.D.
degrees in electrical engineering and computer sci-
ence from the University of Michigan, Ann Arbor,
MI, USA, in 1993 and 1996, respectively.

He is currently a Professor with the School
of Electrical and Electronic Engineering, Yonsei
University, Seoul, South Korea. His research
interests include low-voltage memory circuit and
technology.

Eui-Young Chung (Member, IEEE) received the
B.S. and M.S. degrees in electronics and computer
engineering from Korea University, Seoul, South
Korea, in 1988 and 1990, respectively, and the
Ph.D. degree in electrical engineering from Stanford
University, Stanford, CA, USA, in 2002.

He is currently a Professor with the School
of Electrical and Electronics Engineering, Yonsei
University, Seoul. His research interests include
system architecture and VLSI design, including all
aspects of computer-aided design.

Authorized licensed use limited to: Yonsei Univ. Downloaded on April 22,2022 at 04:48:34 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

